Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Gait Posture ; 111: 14-21, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38608470

ABSTRACT

BACKGROUND: Balance deficits are a major concern for people with multiple sclerosis (pwMS). Measuring complexity of motor behaviour can offer an insight into MS-related changes in adaptability of the balance control system when dealing with increasingly complex tasks. QUESTION: Does postural behaviour complexity differ between pwMS at early stages of the disease and healthy controls (HC)? Does postural behaviour complexity change across increasingly complex tasks? METHODS: Forty-eight pwMS and 24 HC performed four increasingly complex postural tasks with eyes open (EO), eyes closed (EC), on firm (FS) and compliant surface (CS). Lumbar and sternum sensors recorded 3D acceleration, from which complexity index (CI) was calculated using multiscale sample entropy (MSE) in the frontal and sagittal planes. RESULTS: We found that only the complexity index in both planes during the eyes closed on compliant surface (EC-CS) task was significantly lower in pwMS compared to HC. We also found that complexity in pwMS was significantly lower during EC-CS compared to the other three tasks when using both lumbar and sternum sensors. SIGNIFICANCE: Increasing the complexity of postural tasks reduces the complexity of postural behaviour in pwMS. This paradox may reflect reduced adaptability of the sensorimotor integration processes at early stages of MS. CI can provide a different perspective on balance deficits and could potentially be a more sensitive biomarker of MS progression and an early indicator of balance deficit.

2.
Sensors (Basel) ; 24(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38339590

ABSTRACT

Postural impairment in people with multiple sclerosis (pwMS) is an early indicator of disease progression. Common measures of disease assessment are not sensitive to early-stage MS. Sample entropy (SE) may better identify early impairments. We compared the sensitivity and specificity of SE with linear measurements, differentiating pwMS (EDSS 0-4) from healthy controls (HC). 58 pwMS (EDSS ≤ 4) and 23 HC performed quiet standing tasks, combining a hard or foam surface with eyes open or eyes closed as a condition. Sway was recorded at the sternum and lumbar spine. Linear measures, mediolateral acceleration range with eyes open, mediolateral jerk with eyes closed, and SE in the anteroposterior and mediolateral directions were calculated. A multivariate ANOVA and AUC-ROC were used to determine between-groups differences and discriminative ability, respectively. Mild MS (EDSS ≤ 2.0) discriminability was secondarily assessed. Significantly lower SE was observed under most conditions in pwMS compared to HC, except for lumbar and sternum SE when on a hard surface with eyes closed and in the anteroposterior direction, which also offered the strongest discriminability (AUC = 0.747), even for mild MS. Overall, between-groups differences were task-dependent, and SE (anteroposterior, hard surface, eyes closed) was the best pwMS classifier. SE may prove a useful tool to detect subtle MS progression and intervention effectiveness.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Entropy , Postural Balance , Standing Position , Acceleration
3.
Gait Posture ; 102: 39-42, 2023 05.
Article in English | MEDLINE | ID: mdl-36889202

ABSTRACT

BACKGROUND: The local divergence exponent (LDE) has been used to assess gait stability in people with multiple sclerosis (pwMS). Although previous studies have consistently found that stability is lower in pwMS, inconsistent methodologies have been used to assess patients with a broad range of disability levels. QUESTIONS: What sensor location and movement direction(s) are better able to classify pwMS at early stages of the disease? METHODS: 49 pwMS with EDSS ≤ 2.5 and 24 healthy controls walked overground for 5 min while 3D acceleration data was obtained from sensors placed at the sternum (STR) and lumbar (LUM) areas. Unidirectional (vertical [VT], mediolateral [ML], and anteroposterior [AP]) and 3-dimensional (3D) LDEs were calculated using STR and LUM data over 150 strides. ROC analyses were performed to assess classification models using single and combined LDEs, with and without velocity per lap (VELLAP) as a covariate. RESULTS: Four models performed equally well by using combinations of VELLAP, LUM3D, LUMVT, LUMML, LUMAP, STRML, and STRAP (AUC = 0.879). The best model using single sensor LDEs included VELLAP, STR3D, STRML, and STRAP (AUC = 0.878), whereas using VELLAP + STRVT (AUC = 0.869) or VELLAP + STR3D (AUC=0.858) performed best using a single LDE. SIGNIFICANCE: The LDE offers an alternative to currently insensitive tests of gait impairment in pwMS at early stages, when deterioration is not clinically evident. For clinical purposes, the implementation of this measure can be simplified using a single sensor at the sternum and a single LDE measure, but speed should be considered. Longitudinal studies to determine the predictive power and responsiveness of the LDE to MS progression are still needed.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnosis , Gait , Walking , Movement , Postural Balance
4.
Ergonomics ; 66(9): 1246-1254, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36326486

ABSTRACT

Gait stability in soldiers can be affected by task constraints that may lead to injuries. This study determined the effects of weapon handling and speed on gait stability in seventeen soldiers walking on a treadmill with and without a replica weapon at self-selected (SS), 3.5 km·h-1, 5.5 km·h-1, and 6.5 km·h-1 while carrying a 23-kg load. Local dynamic stability was measured using accelerometry at the sacrum (LDESAC) and sternum (LDESTR). No significant weapon and speed interaction were found. A significant effect of speed for the LDESAC, and a significant effect of speed and weapon for the LDESTR were found. Per plane analyses showed that the weapon effect was consistent across all directions for the LDESTR but not for LDESAC. Weapon handling increased trunk but did not affect pelvis stability. Speed decreased stability when walking slower than SS and increased when faster. These findings can inform injury prevention strategies in the military. Practitioner summary: We determined the effects of two constraints in soldier's walking stability, weapon handling and speed, measured at the trunk and sacrum. No constraints interactions were found, however, lower stability when walking slow and greater stability with the weapon at the trunk can inform preventive strategies in military training.


Subject(s)
Military Personnel , Humans , Gait , Walking , Pelvis , Biomechanical Phenomena
5.
Mult Scler ; 28(11): 1773-1782, 2022 10.
Article in English | MEDLINE | ID: mdl-35603749

ABSTRACT

BACKGROUND: Gait in people with multiple sclerosis (PwMS) is affected even when no changes can be observed on clinical examination. A sensitive measure of gait deterioration is stability; however, its correlation with motor tract damage has not yet been established. OBJECTIVE: To compare stability between PwMS and healthy controls (HCs) and determine associations between stability and diffusion magnetic resonance image (MRI) measures of axonal damage in selected sensorimotor tracts. METHODS: Twenty-five PwMS (Expanded Disability Status Scale (EDSS) < 2.5) and 15 HCs walked on a treadmill. Stability from sacrum (LDESAC), shoulder (LDESHO) and cervical (LDECER) was calculated using the local divergence exponent (LDE). Participants underwent a 7T-MRI brain scan to obtain fibre-specific measures of axonal loss within the corticospinal tract (CST), interhemispheric sensorimotor tract (IHST) and cerebellothalamic tract (CTT). Correlation analyses between LDE and fibre density (FD) within tracts, fibre cross-section (FC) and FD modulated by FC (FDC) were conducted. Between-groups LDE differences were analysed using analysis of variance (ANOVA). RESULTS: Correlations between all stability measures with CSTFD, between CSTFDC with LDESAC and LDECER, and LDECER with IHSTFD and IHSTFDC were significant yet moderate (R < -0.4). Stability was significantly different between groups. CONCLUSIONS: Poorer gait stability is associated with corticospinal tract (CST) axonal loss in PwMS with no-to-low disability and is a sensitive indicator of neurodegeneration.


Subject(s)
Multiple Sclerosis , Exercise Test/methods , Gait , Humans , Multiple Sclerosis/pathology , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Walking
6.
Brain Commun ; 3(2): fcab032, 2021.
Article in English | MEDLINE | ID: mdl-34222866

ABSTRACT

Multiple sclerosis is a neuroinflammatory disease of the CNS that is associated with significant irreversible neuro-axonal loss, leading to permanent disability. There is thus an urgent need for in vivo markers of axonal loss for use in patient monitoring or as end-points for trials of neuroprotective agents. Advanced diffusion MRI can provide markers of diffuse loss of axonal fibre density or atrophy within specific white matter pathways. These markers can be interrogated in specific white matter tracts that underpin important functional domains such as sensorimotor function. This study aimed to evaluate advanced diffusion MRI markers of axonal loss within the major sensorimotor tracts of the brain, and to correlate the degree of axonal loss in these tracts to precise kinematic measures of hand and foot motor control and gait in minimally disabled people with multiple sclerosis. Twenty-eight patients (Expanded Disability Status Scale < 4, and Kurtzke Functional System Scores for pyramidal and cerebellar function ≤ 2) and 18 healthy subjects underwent ultra-high field 7 Tesla diffusion MRI for calculation of fibre-specific measures of axonal loss (fibre density, reflecting diffuse axonal loss and fibre cross-section reflecting tract atrophy) within three tracts: cortico-spinal tract, interhemispheric sensorimotor tract and cerebello-thalamic tracts. A visually guided force-matching task involving either the hand or foot was used to assess visuomotor control, and three-dimensional marker-based video tracking was used to assess gait. Fibre-specific axonal markers for each tract were compared between groups and correlated with visuomotor task performance (force error and lag) and gait parameters (stance, stride length, step width, single and double support) in patients. Patients displayed significant regional loss of fibre cross-section with minimal loss of fibre density in all tracts of interest compared to healthy subjects (family-wise error corrected p-value < 0.05), despite relatively few focal lesions within these tracts. In patients, reduced axonal fibre density and cross-section within the corticospinal tracts and interhemispheric sensorimotor tracts were associated with larger force tracking error and gait impairments (shorter stance, smaller step width and longer double support) (family-wise error corrected p-value < 0.05). In conclusion, significant gait and motor control impairments can be detected in minimally disabled people with multiple sclerosis that correlated with axonal loss in major sensorimotor pathways of the brain. Given that axonal loss is irreversible, the combined use of advanced imaging and kinematic markers could be used to identify patients at risk of more severe motor impairments as they emerge for more aggressive therapeutic interventions.

7.
J Parkinsons Dis ; 11(3): 1367-1380, 2021.
Article in English | MEDLINE | ID: mdl-33749618

ABSTRACT

BACKGROUND: People with Parkinson's disease and freezing of gait (FOG; freezers) suffer from pronounced postural instability. However, the relationship between these phenomena remains unclear and has mostly been tested in paradigms requiring step generation. OBJECTIVE: To determine if freezing-related dynamic balance deficits are present during a task without stepping and determine the influence of dopaminergic medication on dynamic balance control. METHODS: Twenty-two freezers, 16 non-freezers, and 20 healthy age-matched controls performed mediolateral weight-shifts at increasing frequencies when following a visual target projected on a screen (MELBA task). The amplitude and phase shift differences between center of mass and target motion were measured. Balance scores (Mini-BESTest), 360° turning speed and the freezing ratio were also measured. Subjects with Parkinson's disease were tested ON and partial OFF (overnight withdrawal) dopaminergic medication. RESULTS: Freezers had comparable turning speed and balance scores to non-freezers and took more levodopa. Freezers produced hypokinetic weight-shift amplitudes throughout the MELBA task compared to non-freezers (p = 0.002), which were already present at task onset (p < 0.001). Freezers also displayed an earlier weight-shift breakdown than controls when OFF-medication (p = 0.008). Medication improved mediolateral weight-shifting in freezers and non-freezers. Freezers decreased their freezing ratio in response to medication. CONCLUSION: Hypokinetic weight-shifting proved a marked postural control deficit in freezers, while balance scores and turning speed were similar to non-freezers. Both weight-shift amplitudes and the freezing ratio were responsive to medication in freezers, suggesting axial motor vigor is levodopa-responsive. Future work needs to test whether weight-shifting and freezing severity can be further ameliorated through training.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Humans , Levodopa/therapeutic use , Parkinson Disease/complications , Parkinson Disease/drug therapy
8.
Comput Methods Biomech Biomed Engin ; 23(14): 1071-1081, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32691622

ABSTRACT

Direct skeletal attachment of prostheses in transfemoral amputees circumvents skin-interface complications associated with conventional sockets; however, joint pain and musculoskeletal disease is known to occur postoperatively. This study quantified hip contact forces and the roles of individual muscles in producing hip contact forces during walking in transfemoral amputees with osseointegrated prostheses. Musculoskeletal models were developed for four transfemoral amputees. Gluteus maximus and gluteus medius were the major contributors to the hip contact forces, and the intact limb hip muscles demonstrated greater contributions to hip contact forces than those of the residual limb. The findings may be useful for mitigating walking asymmetry.


Subject(s)
Amputees , Artificial Limbs , Femur/surgery , Hip Joint/physiopathology , Muscle, Skeletal/physiopathology , Osseointegration , Walking/physiology , Biomechanical Phenomena , Female , Humans , Male , Middle Aged
9.
Mult Scler J Exp Transl Clin ; 6(1): 2055217320905870, 2020.
Article in English | MEDLINE | ID: mdl-32110431

ABSTRACT

BACKGROUND: Neural damage at early stages of multiple sclerosis (MS) can subtly affect gait muscle activation patterns. Detecting these changes using current clinical tools, however, is not possible. We propose using muscle coactivation measures to detect these subtle gait changes. This may also help in identifying people with MS (PwMS) that may benefit from strategies aimed at preventing further mobility impairments. OBJECTIVE: We aimed to determine if coactivation of ankle muscles during gait is greater in PwMS with Expanded Disability Status Scale (EDSS) score <3.5. A secondary aim is to determine whether coactivation increases are speed dependent. METHODS: For this study 30 PwMS and 15 healthy controls (HC) walked on a treadmill at 1.0 m/s, 1.2 m/s and 1.4 m/s. Electromyography was recorded from the tibialis anterior (TA), soleus (SO) and lateral gastrocnemius (LG). The coactivation index was calculated between SO/TA and LG/TA. Ankle kinematics data were also collected. RESULTS: Compared with HC, PwMS exhibited significantly greater SO/TA and LG/TA coactivation, which was greater during early stance and swing phases (p < .01). Speed did not affect coactivation except during early stance. Ankle kinematic changes were also observed. CONCLUSION: PwMS exhibited greater ankle muscles coactivation than controls regardless of the speed of walking. These changes in muscle activation may serve as a biomarker of neurodegeneration occurring at early stages of the disease.

10.
Gait Posture ; 77: 214-217, 2020 03.
Article in English | MEDLINE | ID: mdl-32058286

ABSTRACT

BACKGROUND: People at early stages of multiple sclerosis have subtle balance problems that may affect gait stability. However, differences in methods of determining stability such as sensor type and placements, may lead to different results and affect their interpretation when comparing to controls and other studies. QUESTIONS: Do people with multiple sclerosis (PwMS) exhibit lower gait stability? Do location and type of data used to calculate stability metrics affect comparisons? METHODS: 30 PwMS with no walking impairments as clinically measured and 15 healthy controls walked on a treadmill at 1.2 ms-1 while 3D acceleration data was obtained from sacrum, shoulder and cervical markers and from an accelerometer placed at the sacrum. The local divergence exponent was calculated for the four data sources. An ANOVA with group (multiple sclerosis and control) and data source as main factors was used to determine the effect of disease, data source and their interaction on stability metrics. RESULTS: PwMS walked with significantly less stability according to all sensors (no interaction). A significant effect of data source on stability was also found, indicating that the local divergence exponent derived from sacrum accelerometer was lower than that derived from the other 3 sensor locations. SIGNIFICANCE: PwMS with no evident gait impairments are less stable than healthy controls when walking on a treadmill. Although different data sources can be used to determine MS-related stability deterioration, a consensus about location and data source is needed. The local divergence exponent can be a useful measure of progression of gait instability at early stages of MS.


Subject(s)
Accelerometry , Exercise Test/methods , Gait , Multiple Sclerosis/physiopathology , Postural Balance , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged
11.
Gait Posture ; 70: 389-396, 2019 05.
Article in English | MEDLINE | ID: mdl-30974394

ABSTRACT

BACKGROUND: The mechanisms by which spasticity reductions after botulinum toxin A (BoNT) affect gait in stroke are not well understood. We systematically reviewed the effects of BoNT on spatiotemporal, kinematic, kinetic and electromyographic (EMG) measures during gait. QUESTION: What are the effects of botulinum toxin on gait mechanics in stroke patients? METHODS: Systematic search using PubMed and Web of Science. We considered all studies that reported laboratory-based and instrumented gait measures as primary or secondary outcomes to determine the effects of BoNT on walking performance in stroke populations only. Selected studies were classified and analysed based on the injection sites. RESULTS: A total of 240 articles were identified of which 22 were selected for analysis. Overall, 91% of the studies reported spatiotemporal, 64% kinematics, 23% kinetics, 32% EMG and 23% other gait measures. All but one study found significant effects of BoNT on gait measures using instrumented assessments even when clinical measures (i.e. speed) did not significantly improve. However, the majority of the studies had a high risk of bias. Overall, BoNT improved: a) dorsiflexion during stance, propulsive forces and timing and activity of more proximal musculature with injections in the plantarflexors; b) hip, knee and ankle angles and velocities, coordination and energetic cost with injections in the rectus femoris; c) segmental coordination and energetic cost when several lower limb muscles were injected; and, d) elbow and trunk angles when upper limb muscles were injected. CONCLUSION: Instrumented and laboratory measures of gait improve after BoNT injections in different muscle groups even in the absence of clinical changes.


Subject(s)
Anti-Dyskinesia Agents/therapeutic use , Botulinum Toxins, Type A/therapeutic use , Gait Disorders, Neurologic/drug therapy , Gait/drug effects , Stroke , Walking Speed , Anti-Dyskinesia Agents/administration & dosage , Anti-Dyskinesia Agents/pharmacology , Botulinum Toxins, Type A/administration & dosage , Botulinum Toxins, Type A/pharmacology , Humans , Injections, Intramuscular
12.
Clin Biomech (Bristol, Avon) ; 65: 116-122, 2019 05.
Article in English | MEDLINE | ID: mdl-31031227

ABSTRACT

BACKGROUND: Mediolateral balance assessment (MELBA) comprises tracking of predictable and unpredictable targets moving at increasing frequencies, using centre-of-mass feedback. The mediolateral-balance-assessment was shown to be sensitive to subtle age-related balance deterioration. However, it has been suggested that performance during ground-level tasks can be more sensitive to balance deterioration. METHODS: we developed a modified mediolateral-balance-assessment using tracking of surface translations with comparable waveforms (mechanical mediolateral-balance-assessment) to compare age sensitivity of the visual and mechanical mediolateral-balance-assessment, 15 older adults (68 SD 5 yr) and 12 young adults (30 SD 4 yr) performed both tasks. Phase-shift and gain between the CoM and either the visual target or the surface displacement for the visual and the mechanical mediolateral-balance-assessment, respectively, were calculated. To identify differences in tracking strategies between the visual and mechanical mediolateral-balance-assessment, phase-shift between trunk and leg angles was calculated. FINDINGS: Overall, older adults performed worse than young across the predictable and unpredictable tracking and visual and mechanical tasks. Of all mediolateral-balance-assessment performance descriptors, a significant interaction between age and task (visual or mechanical) was only found for the mean phase-shift. Post-hoc comparisons revealed significant age differences in the visual but not in the mechanical mediolateral-balance-assessment. Significant differences in tracking strategies were found between visual and mechanical mediolateral-balance-assessment with a greater decoupling of trunk and legs during the mechanical than the visual mediolateral-balance-assessment. INTERPRETATION: the visual mediolateral-balance-assessment was more sensitive to age-related balance deterioration than the mechanical mediolateral-balance-assessment, possibly because visual tracking elicits motor strategies that are more affected by ageing.


Subject(s)
Aging , Postural Balance , Psychomotor Performance , Rehabilitation/standards , Sensation Disorders/diagnosis , Torso , Adult , Age Factors , Aged , Diagnosis, Computer-Assisted , Female , Humans , Male , Middle Aged , Rehabilitation/methods , Reproducibility of Results , Software , Stress, Mechanical , Vision, Ocular , Young Adult
13.
J Clin Neurosci ; 54: 140-142, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29764702

ABSTRACT

Cranial-nerve non-invasive neuromodulation (CN-NINM) through the tongue has been proposed as an adjuvant intervention to improve efficacy of rehabilitation. However, CN-NINM effects have only been explored in multiple sclerosis and stroke populations. In this report we used CN-NINM during a 2-week (2 × 1.5 h sessions daily) physiotherapy program for the rehabilitation of a 57 y/o woman presenting with balance and gait impairments after a surgical resection of a fourth ventricular ependymoma. Clinical and instrumented balance and gait assessments showed improved performance in all tests and without adverse effects This study shows the beneficial effects and feasibility of combined physiotherapy and CN-NINM in this patient.


Subject(s)
Brain Neoplasms/rehabilitation , Ependymoma/rehabilitation , Gait Disorders, Neurologic/rehabilitation , Sensation Disorders/rehabilitation , Transcutaneous Electric Nerve Stimulation/methods , Brain Neoplasms/surgery , Ependymoma/surgery , Female , Fourth Ventricle/pathology , Gait Disorders, Neurologic/etiology , Humans , Middle Aged , Radiosurgery/adverse effects , Sensation Disorders/etiology , Tongue , Treatment Outcome
14.
Cerebellum Ataxias ; 5: 6, 2018.
Article in English | MEDLINE | ID: mdl-29556411

ABSTRACT

BACKGROUND: Cranial-nerve non-invasive neuromodulation (CN-NINM) using the portable neuromodulation stimulator (PoNS™) device has been proposed as a novel adjuvant intervention to improve efficacy of gait and balance. This device modulates input and output signals during motor tasks which prompts neuroplastic changes. In this study, we investigated the efficacy of physiotherapy using the PoNS™ in a case with cerebellar degeneration. CASE PRESENTATION: The PoNS™ was used during a high-intensity physiotherapy programme delivered over 2 weeks (2 × 1.5 h sessions daily). Clinical and instrumented gait and balance tests were applied pre- and post-intervention. RESULTS: The patient improved in all tests without any adverse effects. CONCLUSION: This study showed the efficacy and feasibility of combined high-intensity physiotherapy and CN-NINM for gait and balance rehabilitation. Further studies should explore CN-NINM effects in larger and more diverse samples of neurological patients.

16.
NeuroRehabilitation ; 40(2): 277-284, 2017.
Article in English | MEDLINE | ID: mdl-28222549

ABSTRACT

BACKGROUND AND PURPOSE: It is not currently known whether gait and balance measures are responsive to deterioration of motor function in multiple sclerosis (MS) patients with low EDSS scores (≤3.0). The aim of this study was to quantify MS-related gait and balance deterioration over a 12-month period. METHODS: Thirty-eight participants with MS (33 female, mean age: 41.1 ± 8.3 years), mean time since diagnosis 2.2 ± 4.1 years, EDSS score ≤3.0 and without clinical evidence of gait deterioration, were recruited. Participants performed walking trials and Functional and Lateral Reach Tests. Kinematics of the ankle and knee, and electromyography of the tibialis anterior and medial gastrocnemius muscles were also measured. RESULTS: Three participants reported relapses with worsening EDSS scores and 4 non-relapsing participants had worse EDSS scores at 12 months. There were significant decreases in mean gait speed, stride length and balance scores, and a significant increase in double support. Marked changes in ankle kinematics, with decreased medial gastrocnemius activity were observed. CONCLUSION: Gait and balance performance of non-disabled RRMS participants may progressively decline, even in the absence of both acute clinical relapse and change in clinical status measured by the EDSS.


Subject(s)
Disabled Persons , Electromyography/trends , Gait Disorders, Neurologic/diagnosis , Multiple Sclerosis/diagnostic imaging , Postural Balance , Adult , Electromyography/methods , Female , Gait/physiology , Gait Disorders, Neurologic/epidemiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Multiple Sclerosis/epidemiology , Multiple Sclerosis/physiopathology , Muscle, Skeletal/physiopathology , Postural Balance/physiology , Time Factors
17.
Eur J Phys Rehabil Med ; 53(4): 535-544, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27882910

ABSTRACT

BACKGROUND: Evidence on the effect of systemic exercise programs to improve the standing balance with the Nintendo Wii system is very limited and its post-treatment effectiveness is unknown in cerebral palsy (CP) patients. AIM: Primary aim was to compare the effect of Nintendo Wii balance board (Wii-therapy) and standard physiotherapy (SPT), on the performance of standing balance in children and adolescents with CP. Secondary aim was to determine the post-treatment effectiveness of Wii-therapy and SPT. DESIGN: Two-arm, matched-pairs, parallel-groups, randomized, controlled clinical trial. SETTING: Outpatient Rehabilitation Centre in the city of Talca. POPULATION: Patients with CP type spastic hemiplegia (SHE) and spastic diplegia (SDI), aged 7 to 14 years, and level I or II of GMFCS or GMFCS-ER. Were excluded patients with FSIQ<80, epilepsy, previous surgeries and application of Botulinum Toxin-A in the lower limb, uncorrected vision and hearing disorders. METHODS: Thirty-two CP patients (10.7±3.2 years old) were randomly assigned to either Wii-therapy (SDI=7; SHE=9) or SPT intervention (SDI=7; SHE=9). In each group, patients received three sessions per week over a period of 6 weeks. Standing balance was assessed at baseline and every 2 weeks. Additionally, two follow-up assessments (4 additional weeks) were performed to determine post-treatment effectiveness. Standing balance was quantified on force platform obtaining the outcomes area of center-of-pressure (CoP) sway (CoPSway), standard deviation in the medial-lateral (SDML) and the anterior-posterior (SDAP) directions, and velocity in both directions (VML and VAP). RESULTS: Compared to SPT, Wii-therapy significantly reduced the CoPSway (P=0.02) and SDAP in the eyes-open condition (P=0.01). However, the effects wane after 2-4 weeks. Post-hoc analysis revealed that only SHE children benefited from Wii-therapy. CONCLUSIONS: Wii-therapy was better than SPT in improving standing balance in patients with CP, but improves the balance only in SHE patients. Also, Wii-therapy effectiveness waned 2-4 weeks after the end the intervention. CLINICAL REHABILITATION IMPACT: A systematic exercise program like Wii-therapy using the Nintendo Wii Balance Board device can be considered to improves the standing balance in patients with CP, specifically in the SHE type. This program is easy to transfer to physiotherapists and rehabilitation centers.


Subject(s)
Cerebral Palsy/diagnosis , Cerebral Palsy/rehabilitation , Exercise Therapy/methods , Postural Balance/physiology , Video Games , Adolescent , Analysis of Variance , Australia , Child , Female , Humans , Male , Severity of Illness Index , Statistics, Nonparametric , Treatment Outcome
18.
Front Neurol ; 8: 708, 2017.
Article in English | MEDLINE | ID: mdl-29449825

ABSTRACT

Subtle gait and balance dysfunction is a precursor to loss of mobility in multiple sclerosis (MS). Biomechanical assessments using advanced gait and balance analysis technologies can identify these subtle changes and could be used to predict mobility loss early in the disease. This update critically evaluates advanced gait and balance analysis technologies and their applicability to identifying early lower limb dysfunction in people with MS. Non-wearable (motion capture systems, force platforms, and sensor-embedded walkways) and wearable (pressure and inertial sensors) biomechanical analysis systems have been developed to provide quantitative gait and balance assessments. Non-wearable systems are highly accurate, reliable and provide detailed outcomes, but require cumbersome and expensive equipment. Wearable systems provide less detail but can be used in community settings and can provide real-time feedback to patients and clinicians. Biomechanical analysis using advanced gait and balance analysis technologies can identify changes in gait and balance in early MS and consequently have the potential to significantly improve monitoring of mobility changes in MS.

19.
Mult Scler ; 22(14): 1768-1776, 2016 12.
Article in English | MEDLINE | ID: mdl-27364324

ABSTRACT

Laboratory gait analysis or three-dimensional gait analysis (3DGA), which uses motion capture, force plates and electromyography (EMG), has allowed a better understanding of the underlying mechanisms of gait deterioration in patients with multiple sclerosis (PwMS). This review will summarize the current knowledge on multiple sclerosis (MS)-related changes in kinematics (angles), kinetics (forces) and electromyographic (muscle activation) patterns and how these measures can be used as markers of disease progression. We will also discuss the potential causes of slower walking in PwMS and the implications for 3DGA. Finally, we will describe new technologies and methods that will increase precision and clinical utilization of 3DGA in PwMS. Overall, 3DGA studies have shown that functionality of the ankle joint is the most affected during walking and that compensatory actions to maintain a functional speed may be insufficient in PwMS. However, altered gait patterns may be a strategy to increase stability as balance is also affected in PwMS.


Subject(s)
Biomechanical Phenomena/physiology , Electromyography/methods , Gait Disorders, Neurologic/diagnosis , Multiple Sclerosis/diagnosis , Gait Disorders, Neurologic/etiology , Humans , Multiple Sclerosis/complications
20.
J Neuroeng Rehabil ; 13: 12, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26837304

ABSTRACT

BACKGROUND: Body-worn sensors allow assessment of gait characteristics that are predictive of fall risk, both when measured during treadmill walking and in daily life. The present study aimed to assess differences as well as associations between fall-related gait characteristics measured on a treadmill and in daily life. METHODS: In a cross-sectional study, trunk accelerations of 18 older adults (72.3 ± 4.5 years) were recorded during walking on a treadmill (Dynaport Hybrid sensor) and during daily life (Dynaport MoveMonitor). A comprehensive set of 32 fall-risk-related gait characteristics was estimated and compared between both settings. RESULTS: For 25 gait characteristics, a systematic difference between treadmill and daily-life measurements was found. Gait was more variable, less symmetric, and less stable during daily life. Fourteen characteristics showed a significant correlation between treadmill and daily-life measurements, including stride time and regularity (0.48 < r < 0.73; p < 0.022). No correlation between treadmill and daily-life measurements was found for stride-time variability, acceleration range and sample entropy in vertical and mediolateral direction, gait symmetry in vertical direction, and stability estimated as the local divergence exponent by Rosenstein's method in mediolateral direction (r < 0.16; p > 0.25). CONCLUSIONS: Gait characteristics revealed less stable, less symmetric, and more variable gait during daily life than on a treadmill, yet about half of the characteristics were significantly correlated between conditions. These results suggest that daily-life gait analysis is sensitive to static personal factors (i.e., physical and cognitive capacity) as well as dynamic situational factors (i.e., behavior and environment), which may both represent determinants of fall risk.


Subject(s)
Accidental Falls , Gait/physiology , Accelerometry , Activities of Daily Living , Aged , Cross-Sectional Studies , Entropy , Female , Functional Laterality , Humans , Male , Torso , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...